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Lipid bilayers are important inhomogeneous fluid systems that mediate the environment of cells and the
interaction of cells with their environment. A variety of approaches have been taken to model the lipid
molecules in bilayers, from all atom molecular dynamics to rigid body liquid crystals. In this paper we discuss
the application of a density functional theory approach that treats the lipid molecules at the coarse-grained level
of a freely jointed chain. This approach allows for compressibility effects, and can therefore be used to study
not only the long range structure in lipid bilayers, but also the nanoscale structure induced in the bilayer when
the lipids crystallize or when an inclusion �e.g., an embedded protein� is present. This paper presents a detailed
analysis of fluid bilayers and lamellae predicted by the theory. In particular we locate solutions with zero
surface tension. We calculate the phase diagram for all possible phases with planar symmetry, including
uniform macrophases. Surprisingly, we find a first-order phase transition from the lamellar phase to an isolated
bilayer phase on lowering the temperature. This transition appears to be driven by solvent packing effects. A
further lowering of the temperature leads to a set of highly ordered bilayers.
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I. INTRODUCTION

The lipids making up cell membranes play an active role
in a variety of biological processes. Many of these processes,
such as the formation of lipid domains or rafts, the interac-
tions of transmembrane proteins, and membrane fusion, oc-
cur on length and time scales inaccessible to atomistic simu-
lations. As a result, there has been increasing interest in
developing more coarse-grained models for lipid mem-
branes. Many coarse-grained models have been developed
for either molecular dynamics �MD� or Monte Carlo simula-
tions, ranging from united-atom type models �1–3� to bead-
spring �4,5� or liquid-crystalline rigid rod models �6�.

Theoretical approaches that can directly calculate the
equilibrium structure of model membranes can be attractive
for their low computational cost and clear parsing of the
critical physics. A historically important approach treats
membranes as continuum elastic sheets �7�. More recently
molecular level theories have been proposed. May and Ben-
Shaul �8,9� studied lipid-protein interactions with a theory
that described the lipids with a phenomenological free en-
ergy that included head-group repulsions, a water/membrane
interfacial energy, and a contribution from the configura-
tional entropy of the tails.

Several groups have used self-consistent field �SCF�
theory to study lipid phase behavior and membranes. SCF
theory is a mean-field theory that in bilayer applications typi-
cally includes van der Waals–type interactions between vari-
ous species, and the configurational entropy of the lipid tails.
Most often lipids are modeled as infinitely thin “threads” and
the fluid is assumed to be incompressible. Leermakers and
co-workers �10–12� have developed a lattice SCF theory for
lipids that includes chain stiffness and anisotropic interac-
tions between tail segments. They are able to predict a fluid

to gel phase transition for their bilayers. Similar lattice SCF
theories are used by other groups �13–15�. Schick and co-
workers have studied lipid phase diagrams using off-lattice
SCF theories �16,17�.

Another class of theories is based on liquid state theories.
In one extreme, Somoza and co-workers �18� neglected in-
ternal degrees of freedom of the lipids, and developed a den-
sity functional theory �DFT� for anisotropic, rigid am-
phiphilic molecules. They were able to calculate the structure
of bilayers and micelles �18�. Lagüe and co-workers �19–21�
developed an integral equation theory based on the laterally
averaged response of the lipid hydrocarbon tails �obtained
from atomistic MD simulations�. They used the theory to
calculate the potential of mean force between transmembrane
proteins, modeled as rigid cylinders. However, the theory
neglects the lipid head groups, the entropy of the tails, and
any fluctuations normal to the bilayer.

In this paper we consider the molecular density functional
theory of Chandler, McCoy, and Singer �CMS� �22–24�, as
extended to polymeric molecules by McCoy, Curro and co-
workers �25–27�. We use the implementation first suggested
by Donley et al. and detailed further by Frischknecht et al.
�28–30�. The lipids are modeled as coarse-grained spherical
interaction sites. Like SCF theory, the DFT is a mean-field
theory and includes the energetics of hydrophobic-
hydrophilic interactions and the entropy of the lipid tails.
Furthermore both the SCF and our DFT approach treat the
tail configurations as random walks. However, the DFT ap-
proach includes compressibility and packing effects via ex-
plicit liquid state structure as determined from an integral
equation theory of polymeric molecules �polymer reference
interaction site model theory�. Thus the DFT includes two
length scales in predicting bilayer structure, the length scale
of the lipid chains, and the length scale of the beads on the
chain.

We describe our model system in Sec. II and computa-
tional methods in Sec. III. We present our results for bilayer
structure and phase behavior in Sec. IV. In this paper we*Corresponding author: Electronic address: ljfrink@sandia.gov
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restrict our results to morphologies that vary in only one
dimension, since we are primarily interested in lipid bilayers.
Our implementation of the theory can, however, treat sys-
tems in two or three dimensions; an example is given in Sec.
IV E where we show some preliminary results for the effect
of an inclusion in the bilayer. Details of the calculations can
be found in the appendixes. Finally, comparison of the DFT
results found here with molecular dynamics simulations can
be found in the following paper �31�.

II. THE MODEL SYSTEM

Our approach is to coarse-grain the lipid molecules while
retaining both the flexible nature of the tails as well as the
different size and energetic characteristics of hydrocarbon
tails and polar head groups. The lipid molecules consist of
freely jointed, tangent spherical sites or “beads.” Typical lip-
ids found in biological systems have tails composed of
14–20 carbon atoms. There are a wide variety of head groups
possible both in nature and in engineered lipid systems. In
this work we focus on a specific coarse-grained lipid model
in which the tails are eight beads long �roughly two CH2
groups per bead�, and the head groups are lumped into two
larger beads with energetic properties different from the tail
beads. This 8-2-8 model is then a linear copolymer chain, as
shown in Fig. 1. The different sites in the lipid interact with
standard Lennard-Jones �LJ� potentials,

u���r� = u��
LJ �r� − u��

LJ �rc� , �1�

u��
LJ �r� =

4���

kT
�����

r
�12

− ����

r
�6� , �2�

where rc is the cutoff distance where the potential goes to
zero, k is Boltzmann’s constant, and T is the temperature.

We are interested in bilayer-forming lipids and thus chose
the ratio of head to tail bead diameters to be �h /�t=1.44,
giving an overall head-group volume fraction of 0.27. On the
basis of simple packing arguments and previous theoretical
work on similar lipid models �17�, we expect this ratio to
result in lamellar and bilayer-forming lipids. In addition to
the lipid molecules, the model has a single site solvent with
diameter �s=�t	�=1. We set the cross terms in the bead
diameters from the usual Berthelot scaling rules, so that
���=0.5���+���. The self-assembly of the lipids into bilay-

ers is driven by the various interactions in the system. We
have chosen the tail-solvent and tail-head interactions to be
purely repulsive with rc=21/6�ts and rc=21/6�th, respectively.
Solvent-solvent, solvent-head, head-head, and tail-tail inter-
actions are all uniformly attractive with a cutoff of rc=3.5�.
Finally, we set all of ���	�=1. This combination of param-
eters allows for a self-assembling bilayer to form. We note
that one could choose model parameters in a more physical
way to represent specific lipids, as has been done by others
�11�. Here we take a general approach, inspired by previous
coarse-grained MD simulations �4,5� and SCF theories
�16,17�, and explore the predictions of the DFT for this ini-
tial simple model. We will report all lengths in units of � and
energies in units of � /kT.

III. METHODS

The details of the CMS DFT applied here to coarse-
grained lipid models, along with the numerical methods used
to solve the theory, have been enumerated elsewhere �29,32�.
Briefly, the basic quantity in the theory is the inhomogeneous
site density profile ��r�=
����r�, where ���r� is the density
of site type � at r. The basic idea in CMS DFT is to replace
the inhomogeneous, interacting system of interest with a ref-
erence system of ideal, noninteracting chains and solvent, in
a medium induced potential U��r� which captures the effects
of the site interactions. The theory is formulated in the grand
canonical ensemble �GCE�, with the grand potential free en-
ergy � of the inhomogeneous system of interest measured
relative to the free energy �b of the bulk, homogeneous
lipid-solvent mixture which serves as the reservoir for the
inhomogeneous system. Then the grand potential free energy
difference ��=�−�b is given by a Taylor series expansion
about the noninteracting reference system, truncated at sec-
ond order. A functional minimization of �� leads to the DFT
equations to be solved. For completeness, we review this
system of equations in Appendix A. Here we give details of
the calculations presented in this paper.

A. Density functional calculations

A state point in the GCE is specified by �s, �L, V, and T
where �s is the solvent chemical potential, �L is the lipid
chemical potential, V is the system volume, and T is the
temperature. The � variables are defined indirectly in the
CMS DFT by specifying the site number densities of solvent
and lipid in a mixed bulk reservoir fluid. We report here the
total site number density in the reservoir �b, and the number
fraction of solvent, xs, in that reservoir.

There is no way in this grand canonical ensemble to guess
a priori how the state variables �T ,�b ,xs� should be chosen
in order to obtain a bilayer structure, or furthermore to guar-
antee the constraint of zero surface tension that is expected
for biologically relevant structures. For this work, we chose
to keep the value of �b fixed at �b�3=0.59. We restricted our
solutions to have planar symmetry so that the densities were
nonuniform only perpendicular to the bilayer, and analytical
integration of the two dimensions parallel to the bilayer was
possible. While a homogeneous solution of mixed lipids and

FIG. 1. A sketch of the model lipid-solvent system. The tail
beads �white� and the solvent �black� are the same size. The head-
group beads �gray� are larger by a factor of 1.44.
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solvent at constant bulk density is always a stationary state
of this DFT approach, it is clearly not the solution of interest.
In order to obtain bilayerlike solutions, suitable initial
guesses were required. Initial guesses consisting of step
function density profiles were used �with some trial and er-
ror� to generate a nonuniform bilayerlike solution. Arclength
continuation algorithms were used to step from one con-
verged solution to another �see Appendix B for more details�
�33�. We performed exhaustive arclength continuation calcu-
lations as a function of T and xs to find the possible thermo-
dynamic states of the system. Finally, bilayer states of inter-
est �e.g., zero tension bilayers� were identified.

Most of the calculations presented here had a total com-
putational domain size of 40� with reflecting boundary con-
ditions on either side of the domain. Reflecting boundaries
assume �B+i=�B−i where B is the node at the boundary, i is an
integer, and � is any variable in the calculation. For single
bilayer solutions, we often locate the center of the bilayer at
one of the reflecting boundaries. This ensures symmetric bi-
layer solutions, and removes any numerical instabilities due
to drift of bilayer-solvent interfaces in the computational do-
main. Note that in this case the reflecting boundaries result in
a periodic stack of bilayers with neighbors separated by 80�.
This separation is always large enough to ensure that neigh-
boring bilayers are independent.

B. Properties of bilayers

Lipid bilayers are inhomogeneous fluids with soft bound-
aries. An extensive literature exists that describes the physics
of fluids at hard boundaries �34�. Much of the analysis from
those physical systems can be transferred directly to bilayers
with the caveat that the Gibbs dividing surface may be
trickier to define. In general, the properties of interfacial flu-
ids are defined by the excess surface free energy �see Eq.
�A9� for the particulars of our theory�. The excess surface
free energy �ex is the free energy difference between the
bilayer-solvent system of interest and a pure solvent. The
pure solvent density needed to calculate �ex is not known a
priori, but is observed as the solvent density far from the
bilayer in any inhomogeneous solution. This excess free en-
ergy is also precisely the surface tension, 	,

	 = �ex =
������r�� − ��s�

A
, �3�

where ��s is the difference in free energy between the pure
solvent and the bulk homogeneous reservoir, and A is the
total area.

Equation �3� is an energetic route to the surface tension. It
is also possible to use a mechanical route to compute the
surface tension �35�,

	 = 
−





dx s�x� = 
−





dx�PN�x� − PT�x�� , �4�

where the stress profile across the bilayer is s�x�= PN�x�
− PT�x�, x is the direction normal to the bilayer, PN�x� is the
normal component of the pressure tensor �a constant for all x
as dictated by mechanical equilibrium�, and PT�x� is the tan-

gential component of the pressure tensor. Thermodynami-
cally, the grand free energy density ��x� /V can be identified
with the lateral pressure PT�x� �36,37�, and thus a stress pro-
file is rather straightforward to compute with DFT �see Ap-
pendix A for a precise derivation�.

The basic structural quantities that define a given bilayer
are the bilayer thickness t and the density of lipids in the
bilayers, usually reported as the area per lipid AL. Reported
thicknesses are given as the distance between head-group
density peaks, while AL is calculated from

AL = ��L/A�−1 	 �N�
−1 ���x�dx�−1

�5�

where ���x� is the density profile of any single site type � on
the lipid and �L is the total number of lipid molecules in the
system.

IV. RESULTS

While the coarse-grained model presented in Sec. II
seems quite simple, the complexity of the solution space is
significant. Appendix B details this complexity, along with
computational strategies for locating solutions of interest. We
begin this section with a description of the most biologically
relevant bilayer structures that we find in the model. We then
go on to explore the phase diagram of our model in more
detail.

A. Bilayer structure

In biological membranes, the surface tension is expected
to be zero. The 	=0 bilayer for our model at the state point
kT /�=1.3 and �b�3=0.59 is shown in Fig. 2�A�. The density
profile across the bilayer has tail beads in the inner part of
the bilayer, head groups clustered at the bilayer-solvent in-
terface, and solvent excluded from the bilayer. The density
profiles do not exhibit significant packing structure indicat-
ing that the bilayer is in a fluid state. This zero tension bi-
layer is not the only solution of the DFT found for this model
at this state point. Rather, a whole series of solutions are
obtained with different integral numbers of bilayers in the
computational domain �see Appendix B�. Eventually the
space is completely filled with a lamellar state as is shown in
Fig. 2�B�.

We can compare the structure of our model bilayers to
experiment by a rough mapping of the coarse-grained model.
The ratio of head-group volume to tail volume in our lipid is
similar to that in dipalmitoylphosphatidylcholine �DPPC�; if
we assume that the volume of one of our tail beads is equiva-
lent to two CH2 groups in DPPC, we can identify �
=4.75 Å. Here we have used a volume of 28.1 Å3 for the
CH2 groups in DPPC �38�. We can then compare the thick-
nesses of our bilayers, measured as the distance between the
head group density peaks, and the areas per lipid with values
in the literature. For fully hydrated DPPC at 50 °C, the head-
to-head distance t=38.3 Å and the area per lipid AL=64 Å2

�39�. These conditions should apply to our fluid bilayers at
zero tension. Using our mapping for �, we find that the
thickness for bilayers in this model varies from 38 to 35.2 Å
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and the area per lipid from 77.4 to 110.3 Å2 for zero tension
bilayers where the temperature ranges from kT /�=0.92 to
1.3. The best fit to the DPPC data is thus at low temperatures
in the model, close to the transition to ordered bilayers �see
below�. While arguments could be made for making adjust-
ments to the model �adding stiffness or changing coarsening
strategy�, and while we have limited this analysis in phase
space by constraining �b�3=0.59, we nevertheless see that
this model does predict bilayers with properties reasonably
close to experimental lipid bilayers.

In addition to stacked bilayers, we find that the model
exhibits a morphology where two bilayers are fused. Figure
3 shows these fused bilayers at the zero tension point for the
assembly. In this case some of the tails leak out beyond the
head groups, fusing the two bilayers together. Note that the
chemical potential of the 	=0 point for the fused assembly is
different than the chemical potential for the 	=0 point of the
independent bilayers described above.

While zero tension bilayers are clearly important, a vari-
ety of experiments on bilayers or self-assembled monolayer
analogs are performed at nonzero tension. The DFT approach
can be used to study expected structural variations in the

lipid bilayers away from the zero tension point. Figure 4
shows two extremes in lipid structure when the bilayer is
under either tension �Fig. 4�A�� or compression �Fig. 4�B��.
These two extremes in structure were found at turning
points located using arclength continuation algorithms �see
Appendix B�.

FIG. 2. Density profiles for zero tension bilayers, showing the
head groups �bold solid curve�, tail groups �solid curve�, and sol-
vent �dotted curve�. The two cases shown are a single isolated bi-
layer �A�, and a lamellar stack �B�. The lamellar profile has a repeat
period of �=9.05�. The distance between head-group peaks on ei-
ther side of the bilayers is found to be 7.4� for the isolated bilayer
and 7.5� for the lamellar bilayers. The state point for both profiles
is �xs=0.415,�b�3=0.59,kT /�=1.3�.

FIG. 3. Density profile for two fused bilayers at zero tension at
the state point �kT /�=1.3,�b�3=0.59,xs=0.465� �curves as in
Fig. 2�.

FIG. 4. Density profiles for lipid bilayers at the two extremes of
stability for kT /�=1.3 and �b�3=0.59. The solvent fractions and
surface tensions at the two extremes are xs=0.303, 	=0.036kT /�2

�A� and xs=0.627, 	=−0.300kT /�2 �B� �curves as in Fig. 2; note
that these two states are the two extremes of the one-bilayer curve
shown in Fig. 15�.
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At low temperatures we obtain bilayers with strongly or-
dered tails from the DFT. As with the fluid systems, the
thickness of the bilayers varies with state point. In this case,
we observe an increasing number of ordered peaks as the
bilayers become wider. Figure 5 shows two examples of or-
dered profiles. While this order-disorder transition may be
akin to the main gel transition observed in real lipid systems,
we note that in contrast to experiments, the character of the
transition observed here is continuous �discussed further be-
low�. Furthermore while experimental gel phases are charac-
terized by nearly fully extended lipid chains, we never ob-
served fully separated leaflets with 16 peaks in the DFT
calculations.

The characteristics of our ordered states likely arise from
the flexibility in the chains. Previous theoretical SCF de-
scriptions of the gel phase required the inclusion of both
some stiffness in the lipid tails and an anisotropic packing
interaction �10,40,41�. Our DFT does include packing effects
and since the theory is nonlocal �in contrast with SCF theo-
ries�, one may expect that some anisotropy can arise in
highly ordered profiles. However, the large entropy associ-
ated with flexible chains hinders the formation of gel phases;
previous CMS DFT studies of polyethylene required some
chain stiffness in order to obtain a freezing transition �42�.
Thus the ordered phases predicted by our theory are likely
driven by packing effects.

B. Bilayer hydration

As is clear from Fig. 2, these model systems can exhibit
variable amounts of bilayer hydration. The structure of bilay-
ers is generally studied experimentally by considering mul-
tilamellar assemblies, and using x-ray scattering to measure
precise peak positions. Thus it is quite important to under-
stand bilayer hydration, and any possible transitions from
independent bilayers to interacting lamellar assemblies.

In order to investigate the nature of different hydration
states, we considered a computational domain with periodic
boundaries that contained only one bilayer in an infinite
stack. The size of the computational domain was varied in
order to determine whether there is a preferred hydration
state with minimal free energy. A first-order phase transition
requires that there will be a free energy barrier between com-
peting hydration states that have the same free energy at the
same state point. Thus the repeat period of the stack, � is the
order parameter of interest.

Figure 6 shows �ex as a function of � for several
�T ,xs ,�b�3=0.59� state points where the lamellar morphol-
ogy is at 	=0. There are clearly two competing thermody-
namic phases with an energy barrier in between them in all
of the curves �43�. At large �, �ex becomes a constant indi-
cating that the bilayer is fully hydrated and independent of
neighboring bilayers. In an infinite system, the observed
spacing between bilayers will depend only on the amount of
solvent in the system. The local minima at smaller � corre-
spond to the lamellar morphologies. Figure 6 shows that
lamellar morphologies are stable at high temperatures, and
independent bilayers are stable at low temperatures. Given
the free energy barrier between these two states, the point
where the free energies are the same �kT /��1.154� locates a
first-order phase transition. This transition occurs at the 	
=0 point for both the lamellar and bilayer phases where a
pure solvent is also stable. Thus this transition occurs at a
triple point.

The distinct nature of these two phases is apparent when
bilayer properties such as the area per lipid and bilayer thick-
ness are plotted as a function of the order parameter �. The
properties of the lamellar phase are quite sensitive to the
order parameter while the properties of independent bilayers

FIG. 5. Density profiles for two ordered bilayers. The narrow
bilayer in �A� was found at �kT /�=0.877,xs=0.3,�b�3=0.59�. The
thicker bilayer in �B� was found at �kT /�=0.943,xs=0.668,�b�3

=0.59� �curves as in Fig. 2�.

FIG. 6. Excess surface free energy as a function of the period of
a uniform stack of bilayers for different temperatures, all with the
lamellar phase at zero tension.
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are not. Generally, AL increases and the bilayer thickness t
decreases with decreasing � in the lamellar phase. Finally,
we note that on increasing � the bilayer structure is fixed
�with AL and t becoming constant� before the total free en-
ergy is minimized in the independent bilayer phase. We con-
clude that the free energy maximum that differentiates the
lamellar and bilayer phases is primarily due to solvent pack-
ing effects in this model.

Although this phase transition from a lamellar to an inde-
pendent bilayer phase as the temperature is lowered is a sort
of unbinding transition, it is not the usual unbinding transi-
tion discussed in the literature. Elastic membrane theoretical
studies have suggested that on increasing temperature in the
L� phase, steric undulations should dominate and unbinding
from a lamellar stack to isolated bilayers will occur in a
continuous fashion �44�. The transition found here is by con-
trast first order and occurs with decreasing temperature.
Since our calculations are based on a mean-field theory, un-
binding transitions due to steric undulations are not possible,
and the membranes are in some sense infinitely rigid. How-
ever, an “anomalous” swelling regime has been documented
in experiments where on decreasing the temperature toward
the main �e.g., fluid to gel� transition, the lamellar spacing
increases nonlinearly �45,46�. This trend is in the same di-
rection as the predictions of the current theory where we
have found that solvent packing effects are important. It re-
mains to be seen whether this is an artifact of our coarse-
grained model or has broader implications for the experi-
mental systems.

C. Phase diagrams

The previous sections present bilayer structures and dis-
cuss hydration of bilayers in the context of biologically rel-
evant structures at zero tension. In this section we take a
broader perspective to discuss the phase behavior of the par-
ticular coarse grained model presented here. Clearly at high
enough temperatures, macroscopic mixing must occur, and
so there are limits to the existence of the microstructures
presented previously.

In order to construct phase diagrams, it is necessary to
identify all possible thermodynamic phases, and then locate
coexistence curves as a function of appropriate state param-
eters. We have identified four distinct fluid phases and a se-
ries of ordered phases. On the fluid side we have the inde-
pendent bilayer and lamellar microphases presented above,
and two macrophases consisting of a solvent rich homoge-
neous solution and a lipid rich homogeneous solution �SRM
and LRM, respectively�.

The phase diagram in the �T ,xs� plane for the case where
�b�3=0.59 is shown in Fig. 7. At very high temperatures �not
shown�, all species are mixed in a uniform homogeneous
phase. There is a high temperature critical point �also not
shown in the plot� at �kT /��11,xs�0.75�, above which the
system is mixed, and below which the system phase sepa-
rates into a SRM and a LRM. An example of an interface
between the LRM and SRM as calculated in the DFT is
shown in Fig. 8. In this particular density profile, the total
spatial extent of the LRM is quite small, and so interfacial

oscillations are seen throughout the lipid rich domain.
As the temperature is lowered further, the lipids are able

to self-assemble into the microphase-separated states. As dis-
cussed above, there is first a lamellar phase, followed by an
independent fluid bilayer phase at lower temperatures. The
surface tension is zero along the coexistence lines between
the region of the SRM and either type of microphase, and a
triple point occurs at �kT /�=1.154,xs=0.404�. Another triple
point is found at �kT /�=2.15,xs=0.527� at the coexistence
point of the SRM, the LRM, and the lamellar microphase.
The SRM-bilayer line enters the ordered regime continously
at �kT /��0.91,xs=0.33�. In addition this plot shows several
critical points at low temperature that mark the termination
of various otherwise first order layering transitions found for
ordered bilayers.

The nature of the transition between the fluid and ordered
bilayers is further demonstrated in Fig. 9. In essence, first-
order phase transitions between bilayers with different num-
bers of peaks in the tail region were found at low tempera-
ture. The two-phase envelopes for several of these ordering
transitions are shown in the figure. The area per lipid AL is an
order parameter much like density for liquid-vapor transi-
tions; the plot shows pairs of data where each pair is found at
the same state point and excess surface free energy, but has
different morphology. As the temperature is increased, these

FIG. 7. Phase diagram in the T-xs phase space.

FIG. 8. Density profiles demonstrating properties of the inter-
faces between coexisting lipid rich and solvent rich macrophases at
kT /�=2.2 and xs=0.5312.
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ordering transitions terminate in critical points as the phase
envelopes close. We note that phase transitions between or-
dered phases with six and seven peaks as well as ten and
eleven peaks were found, but the complete phase envelopes
were not computed.

Figure 10 shows arclength continuation calculations using
both the chemical potential variable xs and the temperature
as the continuation variables. The lack of discontinuities in
the temperature continuation data further confirms that the
transition from fluid to ordered bilayer phases in this theory
is continuous �second order�. The chemical potential continu-
ation results highlight the first-order transitions among dif-
ferent ordered phases, demonstrating that there are multiple
solutions at many state points, and that various phases ex-
hibit hysteresis beyond the thermodynamic transitions. As
was discussed previously, stiffness in real lipid systems may
preclude the complexity observed here for the ordered
phases.

Finally, in order to facilitate comparison with experiment
and other theoretical approaches in closed ensembles, we
have generated a phase diagram in s-T space where s is
the number fraction of solvent particles in the solution com-
puted via

s =
�s

�L + �s
. �6�

For incompressible models such as those used in self-
consistent field theories �17�, this number fraction could be
easily converted to a volume fraction.

Figure 11 shows this representation of the phase space.
This plot was generated by taking several points along the
coexistence curves in Fig. 7. At each point, the solvent num-
ber fractions of the two coexisting phases were computed.
The solvent fractions for the independent bilayer phase were
computed based on the � of minimal hydration. This � was
established by computing �ex as a function of � as was done
in Sec. IV B. The properties of the lamellae were also found
from the small � minima in these �ex vs � curves.

We see that at higher temperatures, there is a region of
pure lamellae at low solvent fractions, and a region of two-

phase coexistence between lamellae and an excluded SRM
phase at higher s. This behavior is seen experimentally for
aqueous lipid solutions, in which there is a limit to how
much a lamellar phase can be swollen, and beyond which
one has a maximally hydrated lamellar phase coexisting with
excess water �39�. At lower temperatures and low s, lamel-
lae are again found. Then with increasing s, we find
lamellae-bilayer mixtures, pure independent bilayers, inde-
pendent bilayers swollen with excess solvent, and eventually
pure solvent at s�1.

Since we have limited our calculations to planar assem-
blies, our phase diagrams do not show three-dimensional
morphologies �e.g., the hexagonal phase� discussed by oth-
ers. Nevertheless, we can make some comparisons with pre-
vious work. Both Müller and Schick �16� and Li and Schick
�17� used SCF theory to compute phase diagrams for lipid-
like models. In the former case a single tailed model was
used while in the latter case a double tailed lipid was studied.
Both studies found a lamellar phase in a relatively large re-
gion of the phase diagram for low s. In the work of Li and
Schick, the shape of the boundary between lamellar and
solvent-lamellar two phase regions was similar to the shape
of the coexistence curve in Fig. 11.

FIG. 9. Four different phase envelopes between different or-
dered phases exhibiting different numbers of peaks in the tail region
of the bilayer density distribution.

FIG. 10. Arclength continuation calculations highlighting the
nature of the ordered phases exhibited by this model and theory.
First-order transitions are highlighted by the kT /�=0.9427 isotherm
in �A� where multiple solutions are shown at many state points and
hysteresis �dotted lines show metastable branches� is found around
thermodynamic transitions. The continuous nature of the order-
disorder transition is shown in �B� where arclength continuations in
temperature at several xs show no discontinuities.

DENSITY FUNCTIONAL THEORY APPROACH FOR… PHYSICAL REVIEW E 72, 041923 �2005�

041923-7



D. Thermodynamic stability of fused bilayers

In Fig. 3 we showed a profile for two fused bilayers.
Given the above energetic analysis, it is natural to inquire
about the thermodynamic stability of two fused bilayers rela-
tive to two stacked bilayers. Figure 12 shows the free energy
difference between these two cases at three temperatures
along the 	=0 coexistence curve �see Fig. 7�. In all cases the
free energy of the fused state is higher than that of the
stacked bilayers, although the fused system becomes rela-
tively more stable at higher temperatures. This model then
indicates that fused states are metastable and they would ex-
ist as fluctuation driven phenomena. For this model thermal
fluctuations could be expected to be sufficient to observe
fusion at higher temperatures. However, higher temperatures
would also correspond to bilayers exhibiting increased undu-
lations �not captured in the present theory� so further inves-
tigation of the interplay between fused states and undulation
is required.

Much of the literature on fusion is currently concerned
with determination of the structures that form when biologi-
cal membranes fuse. The density profiles presented here do
not give insight into the three-dimensional structure, but do
demonstrate that fused structures are a natural observation in
DFT calculations of the coarse-grained models considered
here.

E. Inclusions in bilayers

Finally we note that one of the strengths of this DFT
approach in comparison with other theoretical approaches
applied to study lipid bilayers is that it can capture both
nanostructure and mesostructure associated with inclusions
in the lipid bilayer. As a demonstration, we have performed a
two-dimensional calculation where a rodlike inclusion was
inserted in the model bilayer. Figure 13 shows both the tail
density distribution and the head-group density distribution
around this inclusion. Clearly, the bilayer bends to accom-
modate this large object. In addition, complex structure is
found within the tail region of the bilayer near the inclusion.

FIG. 11. Phase diagram in the s-T space. Lamellar and two-
phase lamellar-SRM regions are marked. The pure SRM phase is
found on the line s�1. Regions I, II, and II were not fully re-
solved, and only solid lines are based on data obtained from calcu-
lations. Nevertheless it is clear that at these low temperatures, from
left to right there will be a pure lamellar phase, a mixture of lamel-
lar and independent bilayers �region I�, pure bilayers with minimal
hydration �region II�, swollen bilayers that take up excess solvent
�region III�, and finally the SRM.

FIG. 12. Free energy difference between stacked bilayers and
fused bilayers as a function of temperature.

FIG. 13. �Color online� Density distributions of �A� tail seg-
ments and �B� head segments in the vicinity of a rodlike inclusion.
Note that the white regions are where the respective densities of the
two species are less than ��3=10−8.
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Although beyond the scope of this paper, various effects of
the inclusion on the bilayer could be calculated from the
DFT, such as the elastic length scale associated with the
decay of perturbations away from the inclusion �47�, or the
details of the tail configurations and packing near the inclu-
sion. While these results are preliminary, they demonstrate
that this approach may be viable for investigation of a num-
ber of complicated phenomena, from hydrophobic matching
to the interactions of membrane-bound proteins.

V. SUMMARY

In this paper we present in detail the behavior of a density
functional theory approach to lipid bilayers based on a par-
ticular �8-2-8� coarse-grained model. We demonstrated that
this theoretical approach may be suitable for studying bilay-
ers as reasonable density profiles �tail groups to the center of
the bilayer, head groups at the tail-solvent interface, and sol-
vent excluded from the bilayer� are found. Furthermore, cal-
culated properties for fluid bilayers �thickness and area per
lipid� agree reasonably well with experimental systems at
zero tension. At low temperatures, the model predicts or-
dered bilayers in contrast to earlier work using self-
consistent field theories on flexible chain lipids. This sug-
gests that the observed ordering results from packing effects
not present in the SCF approach.

In addition to studying zero tension bilayers, we consid-
ered bilayer hydration, and more generally the phase diagram
of bilayer morphologies that vary only perpendicular to the
bilayer. We found that there is a first-order phase transition
from a lamellar phase with low hydration to an independent
bilayer phase with potentially large hydration on lowering
temperature. This cannot be the unbinding transition previ-
ously studied in theoretical investigations, but it may be re-
lated to anomalous swelling observed in experiments. We
find that this effect is related to solvent packing.

While this particular model may not ultimately be the
ideal choice for studying a particular lipid-solvent system,
the computational techniques and fundamental groundwork
�including observation of fluid and ordered phases, and elu-
cidation of the model phase diagram� provide a fundamental
building block for further investigations of different lipid
models, proteins interacting with bilayers, more complete
physics �e.g., charged bilayers or lipid mixtures�, and im-
proved density functionals.
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APPENDIX A: SYSTEM OF EQUATIONS

1. Density functional theory

As explained briefly in Sec. III, the basic idea in CMS
DFT is to replace the inhomogeneous, interacting system of

interest with a reference system of ideal, noninteracting
chains and solvent, in a medium induced potential U��r�
which captures the effects of the site-site interactions. This
unknown field is the field required for the ideal system to
ultimately have the same density distribution, ��r�
=
����r�, as the system of interest in the known external
field V��r�.

The theory is formulated in the grand canonical ensemble,
with the grand potential free energy � of the inhomogeneous
system of interest measured relative to the free energy �b of
the bulk, homogeneous system which serves as the reservoir
for the inhomogeneous system. Then the grand potential free
energy difference ��=�−�b is given by a Taylor series
expansion about the noninteracting reference system, trun-
cated at second order. A functional minimization of �� with
respect to ���r� and ��−U��r� leads to

U��r� = V��r� − 

�
 dr�c���r − r������r�� − �b�� ,

�A1�

where �� is the chemical potential of site type �, �b� is the
bulk density for site type �, and c�� is the direct correlation
function �DCF� between the � and � site types in the bulk
fluid. The direct correlation function can be calculated from
liquid state theory or obtained from simulations, and essen-
tially describes the packing and interactions between differ-
ent sites in the bulk homogeneous fluid. The calculation of
c���r� used in this work is described below in Sec. A 2.

Equation �A1� has two unknown functions, the density
distribution of interest, ���r�, and the mean field U��r�.
Clearly the relationship between the two must be defined.
For the single site solvent, we simply have the usual Boltz-
mann distribution

�s�r� = �b,s exp�− �Us�r�� , �A2�

where �=1/kT. For the ideal gas of lipids, this relationship
is

���r� =
V

NL
�b,L���r − r��exp�− �


	

U	�r	���
S

�A3�

where NL is the total number of sites in the lipid, �b,L is the
lipid site density in the bulk reservoir, and the angular brack-
ets denote a configurational integral over all possible con-
figurations �r�= �r1 ,r2 ,… ,rNL

�, based on the configuration
probability S�r�. For a single random walk chain, the con-
figurational probability can be written as

S�r1,…,rNL
� = �

s=2

NL

�����rs − rs−1�� , �A4�

where ����r−r�� is the probability of a bond of a certain
length between sites of type � at r and type � at r�. In this
work we will consider freely jointed chains with bond
lengths ���, for which we have

����r� =
1

4����
2 ���r� − ���� . �A5�
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Given the definition for S�r� in Eq. �A4�, the density dis-
tribution for sites of type � on a linear chain lipid becomes

���r� =
�b,�

N�


s��

Gs�r�Gs
inv�r�

exp�− �U��r��
, �A6�

where the sum over s is a sum over all the sites of type � in
the molecule, N� is the total number of sites of type �, and G
and Ginv are propagator functions that describe the configu-
rational probability based on chain connectivity. The propa-
gator functions in Eq. �A6� obey the recursion relations

Gs�r� = exp�− �U��s��r��  dr�����r − r��Gs−1�r�� ,

�A7�

Gs
inv�r� = exp�− �U��s��r��  dr�����r − r��Gs+1

inv �r�� ,

�A8�

for the 2,…,NL sites in the case of Eq. �A7� and the
NL−1,…,1 sites in the case of Eq. �A8�. They satisfy the
“initial” conditions G1�r�=exp�−�U��1��r�� and GNL

inv�r�
=exp�−�U��NL��r��. Here ��s� indicates the site type of bead
s. Note that Eq. �A6� reduces to Eq. �A2� in the case of an
atomic liquid. In our calculations, Eqs. �A1� and �A6�–�A8�
for the lipid and Eqs. �A1� and �A2� for the solvent are
solved simultaneously in real space on a Cartesian grid. Our
numerical methods have been enumerated extensively else-
where �29,32�; here we simply state that we have used a
Newton’s method approach with update dampening as re-
quired for good convergence.

The difference between the free energy of the inhomoge-
neous system of interest and a bulk homogeneous system is

�� = − dr��s�r� − �b,s� −
1

NL


��L�

 dr����r� − �b,��

+
1

2

��

/
dr dr�c���r − r������r����r�� − �b,��b,�� ,

�A9�

where the second term is summed over all lipid sites and the
sum in the last term is over all species �solvent and lipid�.
Note that c���r−r�� contains the nonideal interactions of the
model of interest.

The lateral pressure profile across fluid bilayers is thought
to play a significant role in membrane and membrane protein
function �13,48� and is also related to the curvature elasticity
of the membrane, and is hence a quantity of interest �which
we explore in the following paper�. Based on Eqs. �3�, �4�,
and �A9�, we can identify the stress profile with the excess
surface free energy density, i.e., s�x�=�ex�x� so that

s�x� = − ��s�x� − �b,s� −
1

NL


��L�

����x� − �b,��

+
1

2

��
 dx�c����x − x�������x����x�� − �b,��b,�� − S ,

�A10�

where S is a constant arising from the pure solvent contribu-
tion, and the first sum is taken over the beads in the lipid. In
a pure solvent PT→0 and so S is the isotropic pressure in a
pure solvent where

− S = ��ps,s − �b,s� −
�s,ps

2

2
 dx�css��x − x���

−
1

2

��
 dx�c����x − x����b,��b,� �A11�

and �ps,s is the density of the solvent in a solution that has a
pure uniform solvent.

2. Liquid state input

The direct correlation function c���r� in Eq. �A1� is cal-
culated using the polymer reference interaction site model
�PRISM� liquid state theory with the Percus-Yevick closure
�49,50�. In this work we employ a self-consistent version of
PRISM theory to calculate the DCFs. In self-consistent
PRISM theory, the intramolecular structure factor ��k� is
determined from a single chain Monte Carlo �MC� simula-
tion of the system in a solvation potential which is deter-
mined essentially by the intermolecular correlations. The
PRISM equation for the intermolecular correlations is solved
using the determined ��k�, and then the cycle is repeated to
convergence. Thus, the intramolecular and intermolecular
correlations are calculated self-consistently. This
PRISM-MC approach has been shown to be in good agree-
ment with bulk molecular dynamics simulations for a variety
of polymer melts �51,52�. Good agreement with simulation
was also found for PRISM-MC calculations of athermal
polymer solutions with a single site solvent such as we use
here �53�. We note that in our work the single chain structure
is not completely consistent as it is taken to be of freely
jointed form in the DFT but not in the PRISM-MC calcula-
tions. A recent study of the accuracy of this combined “ran-
dom walk CMS DFT” and PRISM-MC theory found good
qualitative agreement with simulation for density profiles of
homopolymer melts near surfaces �54�.

In this work we are interested in a wide range of attractive
systems, but PRISM theory is known to be more accurate for
harshly repulsive systems. Therefore, we take a perturbation
approach in our treatment of the intermolecular potentials
and hence of the direct correlation functions. Specifically, we
apply the random phase approximation �RPA� �55�. The RPA
splits c�r� into two parts, a short-range, repulsive core con-
tribution and a long-range attractive contribution,

c���r� = c��
core�r� − �u��

att �r� . �A12�

The core term ccore is calculated from PRISM theory using a
repulsive lipid molecule with the same architecture as the
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molecule of interest and with purely repulsive interactions
set to urep�r�. The long range part is taken to be directly
proportional to the attractive part of the pair interaction po-
tential uatt�r�, as is indicated above. Here we define urep�r�
and uatt�r� to be

u��
rep�r� = �u��

LJ �r� + � , if r � rmin,

0 otherwise,
�

u��
att �r� = �0 if r � rmin,

u���r� otherwise,
� �A13�

where the minimum of u��
LJ is located at r=rmin. Note that a

true Weeks, Chandler, Anderson �WCA� approximation
would instead have, for r�rmin, u��

att �r�=−u���rmin� and
u��

rep�r�=u��
LJ �r�+u���rmin� �55,56�. We do not include the

temperature dependence in the calculation of ccore�r� in order
to prevent the need for new PRISM calculations at every
temperature and also to ensure that we remain in the harshly
repulsive regime appropriate for PRISM calculations. Given
this constraint of fixed ccore�r�, it would be difficult to apply
the WCA approximation because then for r�rmin some

terms �specifically, solvent-solvent, head-head, tail-tail, and
head-solvent� would be shifted significantly, by � /kT, while
the others would not be shifted at all due to their purely
repulsive character �rc=rmin�. Shifting the relative interaction
strengths for r�rmin significantly affects self-assembly for
these systems. However, using the approximation of Eq.
�A13� is also somewhat problematic since it results in a
small discontinuity at rmin in the c�r� used in the DFT calcu-
lations. While this combination of approximations seems to
work adequately for both attractive homopolymers near at-
tractive walls and for the fluid bilayers we consider here, it
still remains to completely quantify the impact of these ap-
proximations �57�.

APPENDIX B: COMPLEXITY OF THE STATE SPACE

To locate possible solutions for the model lipid system,
we applied an arclength continuation algorithm �33�. Once a
solution to the DFT equations has been found, this algorithm
is able to follow that solution, as a function of any continu-
ous system parameter, along stable, metastable, or unstable
solution branches and around turning �spinodal� points. This
algorithm was instrumental in understanding the thermody-
namic behavior of our system, since a given initial guess
does not necessarily lead to the lowest free energy solution.

In order to perform these state tracking calculations, each
new DFT solution requires a different ccore�r�. Since these
enumerations require hundreds to thousands of solutions, it is
not practical to embed the PRISM calculation within the
DFT calculation. Therefore as an approximation, we typi-
cally interpolate among four ccore�r� for a given �b�3. For all
of the calculations presented here, the four ccore�r� functions
were calculated at xs=0.001, 0.333, 0.667, and 0.999. As a
result, small errors can be expected at the extremes in xs
�xs�0.01 and xs�0.99�. However, we find that most of the
interesting physics occurs in the region 0.2�xs�0.8 where

FIG. 14. Direct correlation functions for all �� pairs as a func-
tion of bulk solvent number fraction xs at a total bulk density of
�b�3=0.59. �A� shows the direct interactions ctt, chh, css while �B�
shows the cross terms cth, cts, chs. Note that the subscripts indicate
tail beads, head-group beads, and solvent. The various curves are
for xs=0.001 �solid line�, 0.333 �dashed line�, 0.666 �dotted line�,
and 0.999 �dash-dotted line� for all cases.

FIG. 15. Excess free energy per unit volume as a function of xs

for the state point kT /�=1.3 and �b�3=0.59. The numbers in the
figure indicate the numbers of bilayers in the 40� computational
domain for various branches. The various curves are as follows:
bilayer solutions are shown in solid lines, space filling lamellar
solutions are shown with dotted lines and are marked for clarity, a
lipid rich uniform macrophase solution is shown in dashed lines,
and the pure solvent solution is the dash-dot-dotted line at �ex=0.
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the interpolation should be adequate. Figure 14 shows the
core repulsive part of the direct correlation functions at the
four chosen xs values for all of the interactions at �b�3

=0.59 and kT /�=1.3. We see that the changes in ccore�r� with
concentration are relatively small for this system.

Figure 15 shows arclength continuation data at the state
point kT /�=1.3 and �b�3=0.59 for the excess free energy
�ex as a function of xs. The complex solid curve has three
branches that correspond to solutions with different numbers
of bilayers �one, two, and three� in the computational do-
main. Turning points correspond to the limits of stability of
the various morphologies. The branch where two bilayers are
found has two parts. One corresponds to stacked bilayers,
while the other corresponds to fused bilayers �see Fig. 3�.

Other curves are also included in Fig. 15. The excess free
energy of a solution consisting only of solvent is zero by
definition �see Eq. �3��. The lamellar data shown could not be
generated by arclength continuation since the free energy for
this phase must be minimized with respect to the lamellar
period, i.e., the computational domain size, which in our Car-
tesian coordinate system is not a continuous variable. These

data were thus generated by individual solves of the DFT
equations. We note that zero tension assemblies occur at 	
=�ex=0 which corresponds to a multinodal point where sev-
eral branches cross in this model.

Finally, our code also includes algorithms that track bin-
odal points in parameter space �33�. The strategy here is to
solve for two solutions of differing structure simultaneously
while imposing the constraint that the two solutions have
identical free energies. This allows us to track binodal points,
such as the multinodal point between bilayer, lamellar, and
solvent solutions shown in Fig. 15, as a function of T. These
binodal calculations are straightforward provided that opti-
mization of the computational domain size is not required.
So we can easily compute the coexistence curves between
solvent rich and lipid rich macrophases. We can also com-
pute coexistence between bilayers with a large excess pure
solvent region and a pure solvent solution because the bilay-
ers are not constrained by the computational domain and will
find their optimal structure. This allows us to find all 	=0
bilayers as a function of temperature in our model in an
automated way.
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